Human Fetal tissue transplantation in Regenerative Medicine

Introduction:
Fetal tissue transplantation is the use of fetal organ/fetal tissue/fetal cells after its aseptic and consented collection from voluntarily consenting mother and the recipient of the tissue/organ, who is suffering from an intractable disease like a refractory neurodegenerative disease like the cases of Parkinsonism not responding to modern scientific treatment. The process, included legal consent (affidavit in court), ethical consent by the Institutional ethical committee and thorough screening of the tissue/organ for HIV(1&2), Hepatitis(B & C), Cytomegalovirus etc for the donor and the recipient. Fetal tissue transplantation first came into prominence during the manufacture of polio vaccines where aborted human fetal cells were used.3 (http://amhistory.si.edu/polio/virusvaccine/history3.htm) Earlier, human fetal tissue transplantation was limited to spontaneous abortions and also from ectopic pregnancy cases only, however with the concept of birth control, induced fetal abortions came into existence. Abortions may be classified mainly into two groups i. induced and ii. spontaneous. 4 (http://www.msdmanuals.com/professional/gynecology-and-obstetrics/abnormalities-of-pregnancy/spontaneous-abortion) Spontaneous abortion is also known as a miscarriage but induced abortion can be done by an expert physician only after sufficient consent from the mother without jeopardizing her health conditions. Many induced abortions are done on healthy fetuses for birth control and social reasons.

Massive wastage of human research resources
In 2003, nearly 42 million induced abortions happened against 46 million in 1995 and most of them in developing countries. These 46 million aborted fetuses are thrown away in hospital pits and incinerators and treated as a biological trash every year. 1 (http://www.abort73.com/abortion_facts/worldwide_abortion_statistics/) 98% of the abortions, termed as unsafe occur in the developing countries. However, WHO estimates the number of abortions occurring worldwide has stalled between the years 2003 and 2008. Recent statistics from 2008, shows there were 29 abortions per 1000 women aged 15-44 in the developing countries whereas only 24 out of 1000 pregnant women in the developed world. In India hysterotomy and ligation is done in mothers having more than 2 living pregnancies. 2 (http://www.who.int/reproductivehealth/publications/unsafe-abortion/induced-abortion_2012.pdf) (Facts on Induced Abortion Worldwide)

History and importance of fetal tissue:
Slowly and progressively the idea for fetal tissue transplantation also started gaining momentum in the scientific and medical community for refractory diseases involving multiple systems. Dr. Curt Feed and his colleagues on November 10, 1988, for the first time in the U.S., implanted human fetal cells into the brain of a 52-year-old Parkinson’s disease patient named Don Nelson who showed improvements after 6 months of a follow-up visit. (5), 6 (http://www.nytimes.com/1989/05/02/science/in-careful-test-parkinson-s-patient-shows-gains-after-fetal-cell-implant.html?pagewanted=all) Nobel Laureate Prof. Robert G. Edwards in 1991, for the first time summarized an up to date research on fetal tissue in his book. (7) Since 1999, Bhattacharya et al with proper legal consent, following all guidelines mentioned earlier, performed HLA randomized freshly collected and screened fetal tissue transplantation from consenting mothers undergoing hysterotomy and ligation in a State Govt Hospital in Calcutta (India). in a series of patients suffering from chronic renal failure, fatty liver, motor neuron disease, Parkinson’s Disease, Diabetes, Leukopenia, and arthritis. (8) Such state of the art work for the first time are recorded and updated in a book edited by Prof Niranjan Bhattacharya and Prof Phillip Stubblefield of Boston University, USA. (8) Fetal tissue transplantation and research is an extremely potential area of regenerative medicine partly because of its superior properties compared to adult tissues and even adult stem cells. Fetal cells have unique properties like faster proliferation and doubling time, good self-renewal and growth properties and can differentiate with respect to any environmental cues. (9) They are hypo antigenic and are not rejected by the host system after transplantation due to several mechanisms in place and a lack of vasculature and hematopoietic system. (9)

Fetal Tissue and its Importance:
In terms of nomenclature, a fetus is normally referred to as all the prenatal stages and the embryo refers to the earliest stages following fertilization of an ovum with the sperm. From each of these tissues, different fetal cell lines can be maintained in vitro. The fetal tissue is rich in different stem cells, stromal cells, and the progenitor cells. Fetal tissues are further hypo antigenic in nature due to the expression of low mRNA transcripts of HLA-G.10 Roelen et al showed that MSC’s from fetal tissues can have an anti-inflammatory effect.11 In vitro studies of fetal tissue culture has shown low levels of TNF-alpha and more Th2 cell production. The fetal organs are rich in multipotent stem cells. The fetal kidney, for example, has shown to harbour multipotent stem cells so as in the case of the fetal pancreas, fetal heart, fetal liver, and
Fetomaternal chimerism and inhibition of graft rejection:
The fetal tissue is hypo antigenic and it might develop accommodation or resistance to the T-cells and antibodies. (17, 18) This phenomenon of accommodation might also contribute towards the activation of the complement pathway and its protection from harmful, toxic cells and cytokines. The presence of complement activation in the fetus during pregnancy has already been proved. (19, 20) Cryoprotection of the fetus also helps in providing it protection against the toxic attack of the host’s immune system. PI3K and heme oxygenase pathway have shown to be implicated in both the process of accommodation and successful fetal survival. (21, 22) During the time of pregnancy, evidence has shown that some maternal T cells can penetrate to the fetus, however, the activities of such T-cells are blocked and suppressed by the trophoblast layer of the fetus.

Fetomaternal chimerism is a well-documented phenomenon during pregnancy where there is some degree of exchange of the cells between the mother and the fetus via the blood-placental barrier. Herzenberg, et al first described the fetal genetic material residing in the maternal peripheral circulation thereby coining the phenomenon as fetomaternal chimerism. (23) Molecular biology techniques using single copy fetal DNA has also enabled sex determination by amplifying the fetal DNA in the maternal peripheral blood. (24, 25) This passage of fetal cells from the fetus to the mother can reside in the maternal system for years with the earliest detection at 4-5 weeks of gestation and a steady increase in the maternal blood after 24 weeks with a further decline during postpartum. (26, 27)

Fetal microchimerism has been also observed in the maternal bone marrow mesenchymal stem cell population along with mobilized hematopoietic stem cells. (30, 31) This gradual and selective transfer of fetal cells to the maternal system is thought to possess some immunomodulatory effect on the host system as well. Tolerance like accommodation is another important phenomenon by which the fetal tissue survives pregnancy as well as transplantation inside the host for a long time without any graft versus host syndrome. (32, 33) The fetal develops its own micro niche inside the host tissue by downgrading the molecular antennae responsible for immune recognition and rejection. This behaviour is more or less like the mesenchymal stem cells. (34)

Alternatives of Organ Transplantation
Organ transplantation is suggested to patients when all other methods of treatment for an end stage disease have failed. With scientific developments, the science of organ transplantation has also grown with the incorporation of immunology concepts like HLA nuclear antigen matching, allograft T cell immune rejection, antibody activation and graft versus host disease. (35) To combat immune rejection, immune suppressive drugs containing high doses of corticosteroids, monoclonal or polyclonal antibodies are prescribed. Drug therapies like tacrolimus, mycophenolate mofetil, sirolimus, and mizoribine are used in order to suppress the immune system and avoid rejection of the donor organ. (35) However, there are several limitations to this method. The ease of availability in cases of organ transplantation is extremely arduous even in developed nations with long waiting where often the patient requiring organ transplantation succumbs. In poor countries, a cost is a major factor in affording both organ transplantation and immunosuppressive drugs. (35)

The alternatives to organ transplantation are xeno and cadaveric transplantation. Both are attractive options but also have several limitations like chances of zoogenesis, rejection by the host and long term proper physiological function. These limitations ushered a new field in stem cell and regenerative medicine. Scientists now can use different types of stem cells and progenitor cells to reverse several disease conditions. However, not every type of stem cells is user-friendly like embryonic stem cells due to the amount ethics involved including the propensity of formation of teratomas observed in animal models and chances of rejection. Mesenchymal stem cells for their immunosuppressive capabilities along with hematopoietic stem cells are now an attractive source for transplantation in regenerative medicine. (36) Many of these are still undergoing clinical trials. However, scientists from Calcutta in 1999 for the first time claimed that using HLA randomized freshly collected specific fetal tissue from abortion after proper consent as per Indian Council Medical Research Guidelines, help in reversing several end-stage diseases or chronic
Another important advantage of fetal tissue transplantation is that it neither forms teratomas nor rejected by the host's immune system.

Working mechanisms of fetal tissues:
As mentioned above, fetal tissue is hypo antigenic and doesn't exhibit any graft versus host disease. Transplantation of freshly collected fetal tissues has many important properties like the presence of a multipotent niche and their ability to migrate and differentiate under appropriate conditions. This migration of cells from the fetal tissue suggests one of the important properties of cell therapy. Another important advantage of the fetal tissue is due to its less vasculature when compared to other solid organ transplantation, are resistant to hypoxic conditions and can well survive even under stressful and less oxygen conditions. Due to less vasculature, it can also avoid the surveillance of T-cells and other immune complexes to its site thereby evading the body's surveillance system. The extracellular matrix of the fetal tissue consists of integrin & non-integrin receptors, collagenous & non-collagenous molecules along with many other ECM proteins which help in the cell adhesion, migration along with the maintenance of a stem cell micro-environment by integrating these multipotent cells onto the ECM matrix surface. This ECM also provides a support for growth factor deposits and upon activation, proteases help in up-regulation of these growth factors by cleaving the molecules and help them in a controlled release in a site or process specific manner essential for the regenerative process.

Experience of fetal lung tissue transplant:
11 patients, (ages between 26 to 64 years, four male and seven female) voluntarily participated in the HLA randomized fetal lung tissue transplant study. As mentioned earlier too, all the patients were screened for HIV (1, 2), Hepatitis B and C, liver function test, total blood count, blood biochemistry, urea, creatinine, blood sugar, T3 & T4, C-reactive protein and ECG and other blood parameters. Pulmonary function was performed and the parameters used to assess the lung function were FVC and FEV1. Values between 80% to 120% were considered normal. After getting ethical permission, patient, and donor consent, aborted fetuses were collected from mothers who went hysterotomy and ligation. These fetal lung tissues were placed at the axilla area (2-3 cm in length and breadth) along with 1% Xylocaine or local anaesthesia. The axilla area was carefully shaved previously with Betadine and 100% rectified spirit solution before placing the tissue. The place of the axilla was subsequently sutured and no prophylactic antibiotics were prescribed except paracetamol for 2-3 days. After 3 months histology studies were conducted by taking a sample tissue from the axilla. Further observation under a microscope revealed no mononuclear cell or leukocyte invasion, thrombosis or endarteritis. No clinical problems were experienced by the patients also. FEV changes were also observed from a baseline level of 2.4-4.4 range to 3.4-4.6. Similarly forced vital capacity increased to a range of 3.6-4.9 from a baseline of 2.7-4.8 Litres.

This reversal of symptoms is due to remodelling of the lung system through the secretion of surfactant from the specialized fetal lung cells namely Type II Pneumocytes. These are secreted from 2nd trimester onwards in cases of fetal lung. The fetal tissue has a range of connective tissues also which forms the ECM and this ECM also provides a rich environment and source for different stem cells, predominantly epithelial and mesenchymal stem cells, progenitor stem cells which have the capacity to migrate, home and transdifferentiate to the site of injury and secrete cytokines and growth factors essential for repairing any damage.

Fetal Neuronal Tissue transplant for Motor Neuron diseases:
2 patients, (62 years and 45 years) volunteered for the study after informed consent from the donor and the patient along with ethical committee clearance. For the patient aged 65 years, a 2nd trimester or 16 weeks healthy aborted fetus was collected after undergoing hysterotomy and ligation. After proper screening and blood tests, the tissue was placed at the axilla region using 2% xylocaine on 12.03.2004. The patient was advised to continue normal neurological treatment. The patient reported every 6th week without any complications and showed signs of improvement and slow regeneration features through EMG once a month schedule, starting from the 3rd month and continued till the 12th month. However, there was a relapse in the patients' condition in June 2005 suggesting the need for another transplant. The patient in November 2005 further requested for the second set of transplantation.

In the 45-year-old patient, same procedures were followed after obtaining the donor consent from the mother and the patient along with ethical committee clearance. This patient was transplanted with a 14 weeks fetus along with 2% Xylocaine at a heterotopic site that is the axilla. Long term follows up till the 12th month showed improvements, however like the previous case it relapsed again and similarly like the first patient the second patient also insisted on a second fetal tissue transplant. However, the patient was lost to follow-up. EMG reports in both the patients were encouraging which may be due to the transfer of neuro-microenvironmental participation along with stem cells and their growth factors and cytokines.

Fetal tissue transplantation for chronic kidney disease
11 patients, (age 39 to 61 years, 3 male and 6 females) were transplanted with fetal kidney tissue in the axilla region after a donor, patient informed consent and as well as clearance from the ethical committee.
Liver hepatocyte cell of the partially retrieved increased from 3.95 gm percent to an average of 4.53 gm percent and albumin increased from 134-399.

Steatosis and were treated with a freshly collected aborted in another study 13 patients (age between 38-64 years, 9 male and 4 female) were enrolled for the study the progenitor cardiac cells. Synthesis of cytokines and pro-angiogenic growth factors from the property to form smooth muscle cells which can be compensated by the presence of residual adult a reversal of the symptoms as it is

The group of researchers suggested the possibility of migration of the cellular factors helped in the reversal of the symptoms of a chronic renal disease. (38)

Spinal and Brain-derived neural tissue transplant for Posttraumatic Quadriplegia

Two case studies of human neuronal fetal tissue transplantation obtained from the fetal brain and spinal cord were also reported by the same group in case of 2 (1 male, 18 years and 1 female, 65 years) post-traumatic quadriplegia patients. (46) The 18-year-old male suffered an accident where his C4-C5 were fractured and were graded as C category on the American Spinal Injury Association or ASIA. Due to poor economic conditions the patient was shifted to a state Govt Hospital. Following donor, patient consent, and ethical committee clearance, the patient was transplanted with a 16 weeks spinal cord fetal tissue collected after hysterotomy and ligation and was applied with 2% Xylocaine in the axilla. (46) The patient was continued on all other supportive drugs and by 6 weeks from the date of fetal tissue transplantation, the patient could walk with the stick. 9 months follow-up showed remarkable improvements and thereafter he attended OPD only when needed. (46)

The second female patient suffering from post-operative quadriplegia due to astrocytoma Grade II was treated with a 16-week fetal brain tissue after obtaining ethical permission and informed consent from the donor and patient. (46) The patient was economically poor and could not afford other treatments and volunteered for this treatment. The patient was graded D in ASIA scale. Within 3 weeks the patient showed remarkable improvements. By the 6th month, the patient was completely free from quadriplegia and started her chemo radiation as per the physician’s advice. (46) These positive changes in the two patient cases may be due to the plasticity of fetal neural tissue which can provide cues for proper neural development and axonal regeneration. (46)

Cardiac fetal tissue transplant:

In this study 8 patients were selected for fetal tissue transplant with pre-existing disease load of cardiomyopathy, ischemic heart disease, and diabetes mellitus. However, one patient opted out due to HIV infection. (47) All these patients were transplanted with fetal heart tissues after donor consent. (47) Patient consent and ethical committee clearance were obtained before the application of these fetal cardiac tissues at the axilla. After transplantation, no antibiotics were given although the patients were prescribed paracetamol for 2-3 days. (47)

Post 3 months transplantation fetal tissue transplants were collected from the axilla site for micrographic studies which showed no mononuclear, leukocytic invasion, thrombosis or endarteritis. (47) To 20 % improvements were also noticed in the different cardiac parameters post-fetal tissue transplantation. (47) The group of researchers suggested the possibility of migration of the fetal cardiac progenitor cells into the cardiac region combined with the effect of the residual adult cardiac progenitor cells. These cells helped in a reversal of the symptoms as it is known that fetal cardiac cells can form good endothelial cells but lack the property to form smooth muscle cells which can be compensated by the presence of residual adult progenitor cardiac cells. Synthesis of cytokines and pro-angiogenic growth factors from the fetal cardiac tissue can be also one of the reasons as proposed by the research group. (48)

Fetal liver tissue transplantation in Alcoholic fatty degeneration of the Liver

In another study 13 patients (age between 38-64 years, 9 male and 4 female) were enrolled for the study after ethical clearance; patient and donor informed consent. (49) All these 13 patients had alcoholic steatosis and were treated with a freshly collected aborted fetal liver tissue and were administered in the axilla region with 2% Xylocaine prior application at the axillary site. In a follow-up study, patient’s albumin increased from 3.95 gm percent to an average of 4.53 gm percent and albumin increased from 134-399 mg/100 ml in blood to 219.23, 193.54 and 184.23 mg in the 3rd, 6th and 9th month respectively. Micrograph of the partially retrieved tissue also showed no signs of leukocyte or mononuclear cell invasion. (49) Several procedures have been tried or established in order to rectify liver diseases like liver transplantation, hepatocyte cell transplantation, cadaveric transplantation, living donor liver & orthotopic liver transplantation, however, there are several risks associated such as morbidity and mortality, infection,
The T-cell count observed in some of the patients after 5 years. 5 of the patients had a long lasting additional patients with normal T cell numbers post-peripheral blood circulation and till date, the patient is absolutely normal. Further studies were conducted in immunological events. (61)

Researchers in 1974 have treated infants with Di George's syndrome successfully with a 12-week fetal thymus tissue transplantation. (55) The patients were suffering from both Hodgkin's and Non-Hodgkin's Lymphoma and post-transplantation the lymphocytes reached a normal level in the peripheral blood count and the levels were found to return to normal rapidly after the complete removal of the graft. (56) In another report, 22 patients suffering from advanced arthritis and graded as per American college of Rheumatology (19) were enrolled in the study using fetal tissue transplant. (54) Before collection of the fetus, the donor gave her written voluntary consent for collection. After due ethical committee clearance and patient informed consent and screened for any disease plus all biological parameter tests to assess the clinical conditions, patients were transplanted with adrenal glands collected from the 20-week fetus at the axilla. (55) In follow-up studies, general well-being of the patients was reported along with the gain in weight and complete restoration of mobility found in 36% of the cases with the rest 64% showing partial recovery was observed. (55)

Fetal midbrain in Parkinson's disease:
In 2011, researchers from Calcutta published a report of 48 cases where patients suffering from advanced idiopathic Parkinson's disease were transplanted with fetal midbrain. (50) For further histological studies, when patients were requested to give a sample of their transplanted fetal tissue after 1yr, which was refused by the majority thinking that if the fetal tissue is removed they will be suffering again. After proper informed consent, the tissues were retrieved and it was revealed that the graft survived after 10 years from the date of placement of the tissue. (51) A study in some of the few tissues revealed that 5 to 15 g of the transplanted tissues present at the heterotrophic site never caused any GvHD in any of the follow-ups of the patients. The scientists concluded that fetal neuronal tissue can survive in an allo-immune system due to its hypo antigenicity as evident from histopathology studies. Also, there is a possible creation of an own fetal microenvironment important for the fetal cells to survive. (52) No differentiation or abnormal growth was observed in the fetal tissue which suggests the presence of apoptosis in full regulation with the genetic make-up of the cell. A degree of tolerance and accommodation also prevailed in the fetal tissue similar in the case of pregnancy and neoplasm cells. Also, neural progenitor cells rich in fetal tissue helped in the improvement of the condition. (52) Other than improvement in the mental and physical conditions of the patients from Parkinson's, there was also a rise in the haemoglobin content which might be due to the erythropoietin content and its impact on the growing fetal brain. (52, 53)

Adrenal fetal tissue transplant in Arthritis:
In another report, 22 patients suffering from advanced arthritis and graded as per American college of Rheumatology (19) were enrolled in the study using fetal tissue transplant. (54) Before collection of the fetus, the donor gave her written voluntary consent for collection. After due ethical committee clearance and patient informed consent and screened for any disease plus all biological parameter tests to assess the clinical conditions, patients were transplanted with adrenal glands collected from the 20-week fetus at the axilla. (55) In follow-up studies, general well-being of the patients was reported along with the gain in weight and complete restoration of mobility found in 36% of the cases with the rest 64% showing partial recovery was observed. (55)

Fetal Thymus transplant in advanced lymphoma and Leukopenia:
Similarly, the same group of Investigators between 1999 and 2006 collected thymus from consenting donor mothers and transplanted it in seven patients (age between 13 and 64 years, 2 females and 5 males) who were suffering from both Hodgkin's and Non-Hodgkin's Lymphoma after patient informed consent and ethical clearance was provided. Post operation, these patients were prescribed paracetamol for 2 to 3 days. (56) After the transplantation and one-month follow-up, studies revealed the WBC count to be between 24,000 to 42,000/mm3. No GvHD was observed in any of the patients. Histology studies further revealed growth, proliferation and differentiation of the fetal thymus in the hosts. Further, the fetal tissue graft was removed in case of Non-Hodgkin’s lymphoma due to the massive increase in the WBC count and the levels were found to return to normal rapidly after the complete removal of the graft. (57)

Pancreatic fetal tissue transplant for diabetes:
16 patients (11 male and 5 females and age range 39 to 72 years) were selected for the study after ethical committee clearance and patient informed consent were obtained. (58) Fetal tissues between 9 to 12 weeks all within the first trimester were collected after the donor informed consent was signed. Patient’s history was taken followed with screening for different diseases, blood parameters including HBA1c levels were conducted before the pancreatic fetal tissue was applied. (58) Glycosylated haemoglobin came down from 10.38 to 6.8-9.8 range in 1 month and after 2 months it revealed further lowering of the glycosylated glucose to the 6.3-9.2 range. On the third month the HBA1c levels further came down to 5.4-7.6 range thereby gradually reducing the amount of absolute glucose in the blood. (59) Similarly, the pre-transplant albumin levels observed from 24 hours urine sample also came down to 400-1300 mg range from a baseline of 800-2100 mg. A second follow-up study revealed the reduction to a further 200-900 mg range. None of the patients reported any graft versus host syndrome which was also evident from the histology studies taken after 3 months of fetal tissue transplantation. (58)

Thymic fetal tissue transplant in case of Di George’s syndrome:
Researchers in 1974 have treated infants with Di George’s syndrome successfully with a 12-week fetal thymus tissue collected after obtaining proper consent from the donor, patient and clearance from the ethical committee. (60) Small pieces of fetal thymus were transplanted in abdominal muscles of the infant. After a couple of weeks, the respiratory infection disappeared along with no adverse immunological events. (61) Further within a month the lymphocytes reached a normal level in the peripheral blood circulation and till date, the patient is absolutely normal. Further studies were conducted in additional patients with normal T cell numbers post-fetal thymus transplantation except a small decrease in the T-cell count observed in some of the patients after 5 years. 5 of the patients had a long lasting
beneficial effect of more than 20 years with a restoration of normalcy except one who died of cardiomyopathy. (61, 62,63,64,65, 66, 67, 68)

Potentialities of Fetal tissue in Regenerative Medicine:

Fetal tissues have shown good proliferation and differentiation properties into cartilage-like tissues and can be used in spinal cord regeneration and musculoskeletal engineering. (69, 70) Fetal tissues can be easily collected after ethical committee permission and these tissues can be easily manipulated and expanded in cell culture conditions. These cells can be introduced into collagen and hydrogel scaffolds also as a cell delivery model especially in cases of maxillofacial and autologous bone and soft tissue transplantations. Earlier fetal tissue transplantation in the cases of Parkinson’s’ disease has been a successful one for the first time as reported by scientists from Calcutta, similarly fetal neuronal cells differentiated into GABA’ergic or DA neuron transplantation is an attractive clinical option. (71) Fetal liver cells along with syngeneic thymic cells have been successfully transplanted in a case of severe combined immunodeficiency (SCID) in a child due to unavailability of identical HLA for bone marrow transplantation. (72, 73, 74). The patient is currently leading a normal life without ever receiving any further treatment. Following year, another female infant with SCID was also rectified and completely cured using fetal tissue transplantation.

Further Harvey Cushing in 1912, stated that in future; pituitary transplantation can be based on growing a functional gland from a fetal or neonatal tissue. (75) Safe applications of fetal liver cell transplantation have already been documented by a group of researchers in a clinical study showing marked responses in patients with the end stage liver disease after transplantation with fetal liver stem cells. (76) Fetal liver transplantation in seven patients suffering from aplastic anaemia has been also tried where four patients have shown positive results with an increase in CD34 positive cells in the peripheral blood count. (77) None of the cases showed any symptoms of GVHD.

For transplantation in diabetes, replacement of beta cells with beta cells still remains the logical choice. However, the problem with a beta cell in vitro culture is that these cells rapidly tend to lose their identities and dedifferentiates into mesenchymal-like stem cells. (78, 79) Human pancreatic islet cells or islet-derived cells are preferred choices for treating diabetes with transplantation followed by fetal and mesenchymal stem cells. (80) Grafting young ovary in mice has shown to rectify ovulatory cycles. (81) Fetal neuronal tissue transplant in cases of quadriplegia patients was first conducted by a team of scientist from Calcutta in 2004. Scientists have also conducted neuronal fetal cell transplantation in monkeys by culturing these cells under in vitro conditions and then transplanting them. (82, 83)

Ethics:

The rationale behind using fetal tissue transplant is to rejuvenate a damaged or degenerated organ. Current transplantation processes have two main weaknesses like HLA matching and immunosuppressive medication post organ transplantation often leading to suppression of the immune system and higher incidence for the appearance of other malignant diseases. (84) Religious and political views have often undermined the potentialities of fetal tissue research and its clinical applications. Moral questions like whether a woman wants to have a baby or undergo abortion have plagued the area of fetal tissue research for quite some time. (84) Clinicians and researchers do believe that if women have the right to decide whether to have a baby or not, the medical community should also have an equivocal right to decide whether they will be lawfully and legally procuring the aborted fetus for further effective treatment strategies. (84, 85)

According to popular belief, the US government has restricted funding for fetal tissue research due to politics of abortion rather than moral views. (84) Scientists believe that with a number of induced abortions happening each year globally, these discarded fetal tissues can work like the “Holy grail of Medicine” especially in poor countries where the cost of affording treatment for end-stage diseases is extremely high. However, care and caution must be taken so that fetal tissue transplantation in the name of therapeutic benefit for patients with no further treatment options is not abused. Fetal tissue transplantation should be strictly regulated and properly reviewed from time to time with scientific, moral, ethical and clinical justifications so that patients are not exploited for commercial benefits. The first and foremost rule of Bioethics is “Do no Harm and try to do good” and in case of fetal tissue transplantation it should be followed meticulously and in the right spirit for curing the needy and not for monetary gain.

References:

3. http://amhistory.si.edu/polio/virusvaccine/history3.htm

